The added term is called the displacement current density,

$$\vec{J_d} \equiv \epsilon_o \frac{\partial \vec{E}}{\partial t}$$
 (7.106)

It is only called this because it appears in the Ampere's Law equation with the same units and form as a current. It is not a physical current carried by charges.

Section 7.6.2

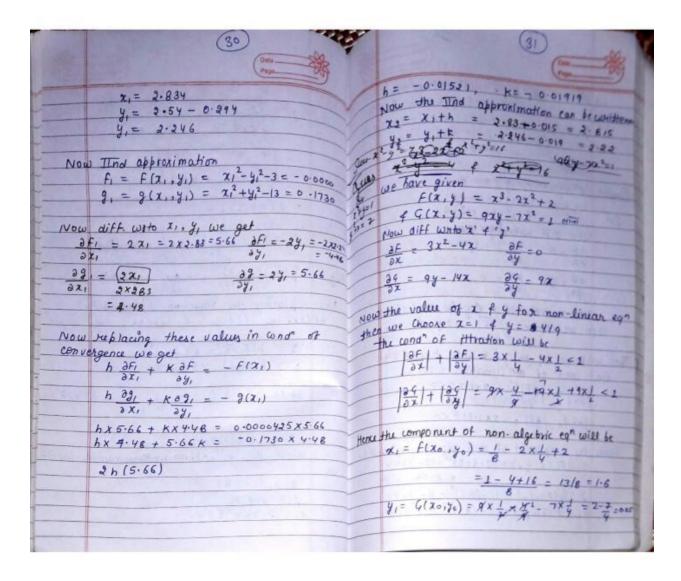
The Displacement Current and Maxwell's Equations

Page

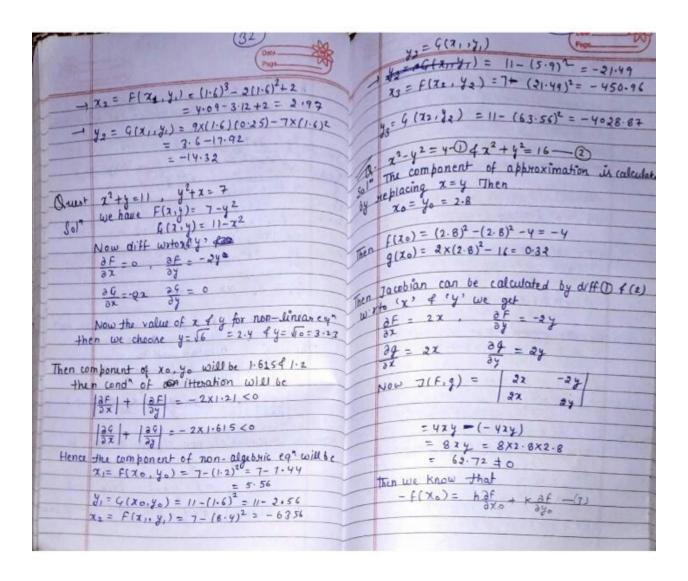
Section 7.6 Electrodynamics: Maxwell's Equations

By construction, $\vec{J_d}$ solves the problem with $\vec{\nabla} \cdot \vec{\nabla} \times \vec{B}$. Let us see how it solves the problem with the integral version of Ampere's Law. The electric field in the capacitor is

$$\vec{E} = \frac{\sigma}{\epsilon_0} \, \hat{n} = \frac{1}{\epsilon_0} \, \frac{Q}{A} \, \hat{n} \tag{7.107}$$


where \widehat{n} is the normal from the positive plate to the negative plate. Therefore, the displacement current is

$$\vec{J_d} = \epsilon_o \, \frac{\partial \vec{E}}{\partial t} = \frac{1}{A} \, \frac{dQ}{dt} \, \hat{n} = \frac{I}{A} \, \hat{n} \tag{7.108}$$


The integral form of Ampere's Law with the displacement current is therefore

$$\oint_{\mathcal{C}} d\vec{\ell} \cdot \vec{B} = \mu_o \, \mathbf{I}_{encl} + \mu_o \, \int_{\mathcal{S}(\mathcal{C})} da \, \widehat{n} \cdot \vec{J}_d \tag{7.109}$$

If we choose the first surface we discussed earlier, the flat surface in the plane of the contour \mathcal{C} , we get the first term but the second term vanishes, which gives μ_o I. If we choose the second surface, the one between the capacitor plates, the first term vanishes but the second term gives μ_o I. Thus, the inconsistency seen earlier has been eliminated.

(34)	Now replacing these value in cond of
Con the	Now replacing These section in Novergence, we get
7301	
-3(10) = h32 + K32 (4)	$-f(x_i) = \frac{h\partial f_i}{\partial x_i} + \frac{\partial f_i}{\partial y_i}$
1 633 + K02	$f(\chi_i) = \frac{1}{2}\chi_i$
-9(x0) = 0x0 3/0 0 0/40) 0 0/0x0	20 14 39
Am of f(Xo) to	(a) = h021 + K 021
Now repairing the value of f(xo) & gl/a, a f/ax, Now repairing the value of f(xo) & gl/a, a f/ax, 21/ayo, a 2/axo, a 2/ayo we get -	-g(x1) = 4321 + K 321
31/04 02/0x01	
+4 = h(5.6) + k(5.6)	524 = h(6.24) +K(19)
+4= h(5.6/1	524 - MC 24) + KH19)
4129 = 113	5:77
15 0 h= 0.328	1 - 4:52
3h(5·6) = 3.68 \$\text{ h= 0.328}	$\frac{2h(6\cdot 24) = 0\cdot 53}{h = 0\cdot 53} = 0.0424$
0.320	h = 0.53
Hence Int approximation can be written as	286.27
TO sharedimari	K= 0.0424x 6.24 + 5.24 = 5.50
W. To V. L.	KEU
3.12	Now the Had approxima can be written a
y,= 3.6-2.1	2 = 3.12 + 0.042 = 3.16
= 0.7	42 312 7 50 7 6
New Tind approximation 12 4: (3:12) - (07)	42 = 0.7 ± 5.50 = 6.2
New Tred approximation f = f(x, x, y,) = x, 2 + y, 2 - y = (3.12) 2 - (0.7) 2	
= 9.78 - 0.49 - 4 = 5.84	sel® x2+y=11-(1) y2+x=7-(e)
= 9.73 - 0.73 - 1.4 42 -16	
3,= 31x, y, = x, + y, -16 = (3.12++(0.2)2-16	The component of approximation is calcul
2-5-77	by suplacing x=y. Then
Now diff wrth 'xi ? 'y' we get	by supracing - y
Now diff with -27 = -2×0.7	$\chi^2 + \chi = 11 = 0$
Now diff with 3ft27, = -2x0-7 3ft - 2x, 3ft27, = -1.4 3x, = 1x3, 37, = -1.4	
= 5:24 = 24,	$x = -1 \pm \sqrt{1 + 44} = -1 \pm 67 = 5$
= 6.2 4 = 24, 27. = 27. 22. = 1.4 28. = 6.2 4 24	
3x - 6.54 341	x= -1+6.7/2 = 5.9/2 = 2.85

